首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4944篇
  免费   636篇
  国内免费   127篇
  2024年   15篇
  2023年   121篇
  2022年   109篇
  2021年   286篇
  2020年   281篇
  2019年   360篇
  2018年   235篇
  2017年   190篇
  2016年   169篇
  2015年   218篇
  2014年   341篇
  2013年   406篇
  2012年   229篇
  2011年   294篇
  2010年   204篇
  2009年   211篇
  2008年   209篇
  2007年   185篇
  2006年   199篇
  2005年   139篇
  2004年   147篇
  2003年   117篇
  2002年   111篇
  2001年   74篇
  2000年   52篇
  1999年   83篇
  1998年   66篇
  1997年   55篇
  1996年   46篇
  1995年   48篇
  1994年   56篇
  1993年   32篇
  1992年   46篇
  1991年   36篇
  1990年   39篇
  1989年   40篇
  1988年   26篇
  1987年   27篇
  1986年   15篇
  1985年   23篇
  1984年   20篇
  1983年   16篇
  1982年   20篇
  1981年   21篇
  1980年   17篇
  1979年   16篇
  1978年   12篇
  1976年   7篇
  1973年   11篇
  1970年   7篇
排序方式: 共有5707条查询结果,搜索用时 15 毫秒
101.
Biodynamics and injury potential of operators in stand-up rider lift truck accidents have been investigated with a special focus on head injury. An anthropomorphic test device (ATD) model was used as an operator surrogate in computer simulations of off-the-dock (OTD) and tip-over (TO) accidents. The biomechanical model representing the ATD was developed based on rigid body segments, and then combined with a rigid body truck model in the accident simulations. The operator compartment of the truck model was enclosed with a rear door. The computed kinematics are in agreement with the results of previous experimental testing. A 2D finite element model of the head was created to compute head impact decelerations in the sagittal plane. Values of the head injury criterion for the TO cases were computed from the model and shown to compare favourably with experimental values. The results advance the state of knowledge concerning injury potential in TO and OTD accidents and simulation models for such accidents.  相似文献   
102.
The goal of this paper is to study the influence of placenta position on the risk of placenta abruption following a car crash involving a full term pregnant woman in the driver's seat. We developed an anatomically precise finite element numerical model of a pregnant woman. This numerical model was validated using experimental data from crash tests using cadavers given to science. For a frontal impact at a speed of 20 km/h, the mean value of peak strain levels at the utero-placenta interface were found to be close to 20%, independent of placenta position, representing an adverse foetal outcome risk of approximately 15%. This study found no significant effect of placenta position on the risk of placenta abruption. Our anatomically precise approach does however confirm the interest of using a numerical model when studying injury mechanisms in pregnant women involved in car crashes.  相似文献   
103.
Abstract

In the present study, the free fall impact test in accordance with the EN1078 standard for certification of bicycle helmets is replicated using numerical simulations. The impact scenario is simulated using an experimentally validated, patient-specific head model equipped with and without a bicycle helmet. Head accelerations and intracranial biomechanical injury metrics during the impacts are recorded. It is demonstrated that wearing the bicycle helmet during the impact reduces biomechanical injury metrics, with the biggest reduction seen in the metric for skull fracture.  相似文献   
104.
We investigated the role of the astrocytic and neuronal hemichannels (HCs) in the spread of cortical neuronal death in a rat cortical injury model. Over time (by 6 h), propidium iodide (PI)-positive cells with labeling either with anti-neuron specific enolase or anti-parvalbumin (indicating GABAnergic interneurons) antibody spread in the deep cortical layers adjacent to the injury and co-localized with activated μ-calpain. Connexin (Cx)-43, glial fibrillary acidic protein (GFAP), activated μ-calpain and α-fodrin breakdown product (FBP) increased post-injury, peaking at 1 h, in the injury and adjacent areas. GFAP-Cx43-positive reactivated astrocytes exhibited similar distribution to the dead neurons. Cx43 and Cx36 primarily comprise HCs in the astrocyte and neuron, respectively. Ethidium bromide (EtBr) uptake was enhanced post-injury, and confirmed in the Cx43- and Cx36-positive cells. A Cx43-HC inhibitor Gap26 prevented the opening of the Cx43-HC and Cx36-HC, μ-calpain activation, α-fodrin proteolysis and death in the deep cortical neurons. Collectively, opening of the astrocytic Cx43-HC and neuronal Cx36-HC would induce the regional spread of cortical neuronal death through μ-calpain activation in the rat brain injury model.  相似文献   
105.
The ability to discriminate cell adhesion molecule expression between healthy and inflamed endothelium is critical for therapeutic intervention in many diseases. This study explores the effect of laminar flow on TNFα‐induced E‐selectin surface expression levels in human umbilical vein endothelial cells (HUVECs) relative to IL‐1β‐induced expression via flow chamber assays. HUVECs grown in static culture were either directly (naïve) activated with cytokine in the presence of laminar shear or pre‐exposed to 12 h of laminar shear (shear‐conditioned) prior to simultaneous shear and cytokine activation. Naïve cells activated with cytokine in static served as control. Depending on the cell shear history, fluid shear is found to differently affect TNFα‐induced relative to IL‐1β‐induced HUVEC expression of E‐selectin. Specifically, E‐selectin surface expression by naïve HUVECs is enhanced in the 8–12 h activation time range with simultaneous exposure to shear and TNFα (shear‐TNFα) relative to TNFα static control whereas enhanced E‐selectin expression is observed in the 4–24 h range for shear‐IL‐1β treatment relative to IL‐1β static control. While exposure of HUVECs to shear preconditioning mutes shear‐TNFα‐induced E‐selectin expression, it enhances or down‐regulates shear‐IL‐1β‐induced expression dependent on the activation period. Under dual‐cytokine‐shear conditions, IL‐1β signaling dominates. Overall, a better understanding of E‐selectin expression pattern by human ECs relative to the combined interaction of cytokines, shear profile and history can help elucidate many disease pathologies. Biotechnol. Bioeng. 2013; 110: 999–1003. © 2012 Wiley Periodicals, Inc.  相似文献   
106.
The Na+-coupled glucose transporter SGLT1 (SLC5A1) accomplishes concentrative cellular glucose uptake even at low extracellular glucose concentrations. The carrier is expressed in renal proximal tubules, small intestine and a variety of nonpolarized cells including several tumor cells. The present study explored whether SGLT1 activity is regulated by caveolin-1, which is known to regulate the insertion of several ion channels and carriers in the cell membrane. To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of caveolin-1 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes, but not in oocytes injected with water or caveolin-1 alone, the addition of glucose to the extracellular bath generated an inward current (Ig), which was increased following coexpression of caveolin-1. Kinetic analysis revealed that caveolin-1 increased maximal Ig without significantly modifying the glucose concentration required to trigger half maximal Ig (KM). According to chemiluminescence and confocal microscopy, caveolin-1 increased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5 μM) resulted in a decline of Ig, which was similar in the absence and presence of caveolin-1. In conclusion, caveolin-1 up-regulates SGLT1 activity by increasing carrier protein abundance in the cell membrane, an effect presumably due to stimulation of carrier protein insertion into the cell membrane.  相似文献   
107.
The clinical use of the antineoplastic drug cisplatin is limited by its deleterious nephrotoxic side effect. Cisplatin-induced nephrotoxicity is associated with an increase in oxidative stress, leading ultimately to renal cell death and irreversible kidney dysfunction. Oxidative stress could be modified by the cystic fibrosis transmembrane conductance regulator protein (CFTR), a Cl channel not only involved in chloride secretion but as well in glutathione (GSH) transport. Thus, we tested whether the inhibition of CFTR could protect against cisplatin-induced nephrotoxicity. Using a renal proximal cell line, we show that the specific inhibitor of CFTR, CFTRinh-172, prevents cisplatin-induced cell death and apoptosis by modulating the intracellular reactive oxygen species balance and the intracellular GSH concentration. This CFTRinh-172-mediated protective effect occurs without affecting cellular cisplatin uptake or the formation of platinum-DNA adducts. The protective effect of CFTRinh-172 in cisplatin-induced nephrotoxicity was also investigated in a rat model. Five days after receiving a single cisplatin injection (5 mg/kg), rats exhibited renal failure, as evidenced by the alteration of biochemical and functional parameters. Pretreatment of rats with CFTRinh-172 (1 mg/kg) prior to cisplatin injection significantly prevented these deleterious cisplatin-induced nephrotoxic effects. Finally, we demonstrate that CFTRinh-172 does not impair cisplatin-induced cell death in the cisplatin-sensitive A549 cancer cell line. In conclusion, the use of a specific inhibitor of CFTR may represent a novel therapeutic approach in the prevention of nephrotoxic side effects during cisplatin treatment without affecting its antitumor efficacy.  相似文献   
108.
The endemic occurrence of obesity and the associated risk factors that constitute the metabolic syndrome have been predicted to lead to a dramatic increase in chronic liver disease. Non-alcoholic steatohepatitis (NASH) has become the most frequent liver disease in countries with a high prevalence of obesity. In addition, hepatic steatosis and insulin resistance have been implicated in disease progression of other liver diseases, including chronic viral hepatitis and hepatocellular carcinoma. The molecular mechanisms underlying the link between insulin signaling and hepatocellular injury are only partly understood. We have explored the role of the antiapoptotic caspase-8 homolog cellular FLICE-inhibitory protein (cFLIP) on liver cell survival in a diabetic model with hypoinsulinemic diabetes in order to delineate the role of insulin signaling on hepatocellular survival. cFLIP regulates cellular injury from apoptosis signaling pathways, and loss of cFLIP was previously shown to promote injury from activated TNF and CD95/Apo-1 receptors. In mice lacking cFLIP in hepatocytes (flip−/−), loss of insulin following streptozotocin treatment resulted in caspase- and c-Jun N-terminal kinase (JNK)-dependent liver injury after 21 days. Substitution of insulin, inhibition of JNK using the SP600125 compound in vivo or genetic deletion of the mitogen-activated protein kinase (MAPK)9 (JNK2) in all tissues abolished the injurious effect. Strikingly, the difference in injury between wild-type and cFLIP-deficient mice occurred only in vivo and was accompanied by liver-infiltrating inflammatory cells with a trend toward increased amounts of NK1.1-positive cells and secretion of proinflammatory cytokines. Transfer of bone marrow from rag-1-deficient mice that are depleted from B and T lymphocytes prevented liver injury in flip−/− mice. These findings support a direct role of insulin on cellular survival by alternating the activation of injurious MAPK, caspases and the recruitment of inflammatory cells to the liver. Thus, increasing resistance to insulin signaling pathways in hepatocytes appears to be an important factor in the initiation and progression of chronic liver disease.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号